The Geometric Means in Banach *-Algebras

Bao Qi Feng

Dedicated to Professor Joe Diestel for his 60^{th} birthday

ABSTRACT. The arithmetic-geometric-harmonic inequality has played a special role in elementary mathematics. During the past twenty five years (see [1], [2] and [8] etc.) a great many mathematicians have researched on various kinds of matrix versions of the arithmetic-geometric-harmonic inequality. In this article we will define the geometric means of positive elements in Banach *-algebras and prove that the arithmetic-geometric-harmonic inequality does hold in Banach *-algebras.

Keywords and Phrases. Arithmetic mean, geometric mean, harmonic mean and Banach *-algebra.

2000 AMS Subject Classification. 47A63, 47A64.

1. Introduction

Let A be a Banach *-algebra. An element $a \in A$ is called self-adjoint if $a^* = a$. A is Hermitian if every self-adjoint element a of A has real spectrum: $\sigma(a) \subset \mathbb{R}$, where $\sigma(a)$ denotes the spectrum of a. We assume in what follows that a Banach *-algebra A is Hermitian. Also we assume that A is unital with unit 1. Saying an element $a \geq 0$ means that $a = a^*$ and $\sigma(a) \subset [0, \infty)$. a > 0 means that $a \geq 0$ and $0 \not\in \sigma(a)$. Thus, a > 0 implies its inverse a^{-1} exists. Denote the set of all invertible elements in A by Inv(A). If $a, b \in A$, then $a, b \in Inv(A)$ imply $ab \in Inv(A)$, and $(ab)^{-1} = b^{-1}a^{-1}$. Saying $a \geq b$ means $a - b \geq 0$, and a > b means a - b > 0. Shirali-Ford Theorem ([6] or [3], Theorem 41.5) asserted that $a^*a \geq 0$ for every $a \in A$. Based on Shirali-Ford Theorem, Okayasu [5], Tanahashi and Uchiyama [7] proved the following inequalities:

- (1) If $a, b \in A$, then $a \ge 0$, $b \ge 0$ imply $a + b \ge 0$, with $\alpha \ge 0$ implies $\alpha a \ge 0$.
- (2) If $a, b \in A$, then a > 0, $b \ge 0$ imply a + b > 0.
- (3) If $a, b \in A$, then either $a \ge b > 0$, or $a > b \ge 0$ imply a > 0.
- (4) If a > 0, then $a^{-1} > 0$.
- (5) If c > 0, then 0 < b < a if and only if cbc < cac; Also $0 < b \le a$ if and only if $cbc \le cac$.
 - (6) If 0 < a < 1, then $1 < a^{-1}$.
 - (7) If 0 < b < a, then $0 < a^{-1} < b^{-1}$; Also if $0 < b \le a$, then $0 < a^{-1} \le b^{-1}$.

Also, Okayasu [5] showed that the following Löwner-Heinz inequality still holds in Banach *-algebras:

Theorem Let A be a unital Hermitian Banach *-algebra with continuous involution. Let $a, b \in A$ and $p \in [0, 1]$. Then $a^p > b^p$ if a > b, and $a^p \ge b^p$ if $a \ge b$.

It is natural to ask if there is an arithmetic-geometric-harmonic means inequality in Banach *-algebras?

In this paper, we will address this problem.

2. The laws of exponents

Let $a \in A$ and a > 0, then $0 \notin \sigma(a)$ and the fact of $\sigma(a)$ being nonempty compact subset of \mathbb{C} implies that

$$\inf\{z: z \in \sigma(a)\} > 0$$
 and $\sup\{z: z \in \sigma(a)\} < \infty$.

Choose γ to be a closed rectifiable curve in $\{\text{Re } z > 0\}$, the right half open plane of the complex plane, such that $\sigma(a) \subset \text{ins } \gamma$, the inside of γ . Let G be an open subset of $\mathbb C$ with $\sigma(a) \subset G$. If $f: G \to \mathbb C$ is analytic, we define an element f(a) in A by

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} f(z)(z-a)^{-1} dz.$$

It is known (see [4], p.201 - p.204) that f(a) does not depend on the choice of γ and the Spectral Mapping Theorem:

$$\sigma(f(a)) = f(\sigma(a))$$

holds.

For any $\alpha \in \mathbb{R}$, we define

$$a^{\alpha} = \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} (z - a)^{-1} dz$$

where z^{α} is the principal α -power of z. Since A is a Banach *-algebra, $a^{\alpha} \in A$. Since z^{α} is analytic in {Re z > 0}, by the Spectral Mapping Theorem

$$\sigma(a^{\alpha}) = (\sigma(a))^{\alpha} = \{z^{\alpha} : z \in \sigma(a)\} \subset (0, \infty).$$

Thus, we have

Lemma 1 If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha} > 0$.

Moreover, one of the laws of exponents holds in Banach *-algebras.

Lemma 2 If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha}a^{\beta} = a^{\alpha+\beta}$.

Proof Let γ be defined as in the discussion preceding lemma 1. It is known that ([4], VII. 4.7. Riesz Functional Calculus) that the map

$$f \mapsto f(a) = \frac{1}{2\pi i} \int_{\gamma} f(z)(z-a)^{-1} dz$$

of $\operatorname{Hol}(a) \to A$ is an algebra homomorphism, where $\operatorname{Hol}(a) = \operatorname{all}$ of the functions that are analytic in a neighborhood of $\sigma(a)$. That is, f(a)g(a) = (fg)(a). Moreover, $z^{\alpha}z^{\beta} = z^{\alpha+\beta}$ holds for principal powers of z implies that

$$a^{\alpha}a^{\beta} = \frac{1}{2\pi i} \int_{\gamma} z^{\alpha}z^{\beta}(z-a)^{-1}dz = \frac{1}{2\pi i} \int_{\gamma} z^{\alpha+\beta}(z-a)^{-1}dz = a^{\alpha+\beta}.$$

Lemma 3 If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^{\alpha})^{-1} = (a^{-1})^{\alpha} = a^{-\alpha}$.

Proof Note that $a^0 = 1$ ([3], Lemma 1, p.31), and from Lemma 2 we have

$$a^{\alpha}a^{-\alpha} = a^{\alpha + (-\alpha)} = a^0 = 1.$$

By the uniqueness of the inverse of an element in A, $(a^{\alpha})^{-1} = a^{-\alpha}$.

Next we want to verify that $(a^{-1})^{\alpha} = a^{-\alpha}$. We know that a > 0 implies that

$$\inf\{z: z \in \sigma(a)\} > 0$$
 and $\sup\{z: z \in \sigma(a)\} < \infty$.

Choose positive real numbers r_1 and r_2 such that

$$0 < r_1 < \inf\{z : z \in \sigma(a)\},$$
 $r_2 > \sup\{z : z \in \sigma(a)\}$

and

$$\frac{1}{r_1} > \sup\{z : z \in \sigma(a)\}, \qquad 0 < \frac{1}{r_2} < \inf\{z : z \in \sigma(a)\}.$$

Let γ be a closed rectifiable curve in $\{\text{Re } z > 0\}$, which passes r_1 and r_2 and such that $\sigma(a) \subset \text{ins } \gamma$. Then the curve $\frac{1}{\gamma} = \{\frac{1}{z} : z \in \gamma\}$ is also a closed rectifiable with $\sigma(a) \subset \text{ins } \frac{1}{\gamma}$ and $\frac{1}{\gamma} \subset \{\text{Re } z > 0\}$. Thus,

$$(a^{-1})^{\alpha} = \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} (z - a^{-1})^{-1} dz$$

$$= \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} \left(a - \frac{1}{z} \right)^{-1} \frac{a}{z} dz$$

$$= \frac{a}{2\pi i} \int_{\frac{1}{\gamma}} \lambda^{-\alpha - 1} (\lambda - a)^{-1} d\lambda \qquad \qquad \left(\text{Substituting} : \lambda = \frac{1}{z} \right)$$

$$= aa^{-\alpha - 1} = a^{-\alpha}. \qquad \text{(Lemma 2)}$$

Lemma 4 If $0 < a \in A$, $0 < b \in A$, $\alpha, \beta \in \mathbb{R}$, and ab = ba, then $a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}$.

Proof Suppose that $z \notin \sigma(a)$, then $ab = ba \Longrightarrow (z - a)b = b(z - a) \Longrightarrow b(z - a)^{-1} = (z - a)^{-1}b$. Let γ be defined as in the discussion preceding lemma 1. Then

$$a^{\alpha}b = \left(\frac{1}{2\pi i} \int_{\gamma} z^{\alpha} (z-a)^{-1} dz\right) b = \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} (z-a)^{-1} b dz$$
$$= \frac{1}{2\pi i} \int_{\gamma} z^{\alpha} b (z-a)^{-1} dz = b \left(\frac{1}{2\pi i} \int_{\gamma} z^{\alpha} (z-a)^{-1} dz\right) = ba^{\alpha}.$$

Thus,

$$ab = ba \implies a^{\alpha}b = ba^{\alpha} \implies a^{\alpha}b^{\beta} = b^{\beta}a^{\alpha}.$$

3. THE ARITHMETIC MEAN, GEOMETRIC MEAN AND HARMONIC MEAN

Naturally, for $a, b \in A$, and w_1, w_2 are positive numbers summing to 1, their weighted arithmetic mean can be defined as

$$A_w(a,b) := w_1 a + w_2 b.$$

If a > 0, b > 0, their weighted harmonic mean can be defined as

$$H_w(a,b) := (w_1 a^{-1} + w_2 b^{-1})^{-1}$$
.

From the point view of matrix analysis (see [1]), if a > 0, b > 0, and w_1 , w_2 are positive numbers summing to 1, their weighted geometric mean can be defined as

$$G_w(a,b) := b^{\frac{1}{2}} (b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{w_1} b^{\frac{1}{2}}.$$

Denote $A_w(a,b)$, $G_w(a,b)$ and $H_w(a,b)$ by A(a,b), G(a,b) and H(a,b) respectively if $w_1 = w_2 = \frac{1}{2}$. It is clear that $A_w(a,b)$, $G_w(a,b)$, $H_w(a,b) \in A$ and $H_w(a,b) > 0$ and $G_w(a,b) > 0$ by inequalities (2), (4), (5) and Lemma 1 above. Does the following arithmetic-geometric-harmonic inequalities hold

$$H_w(a,b) \le G_w(a,b) \le A_w(a,b)$$

in Banach *-algebras?

Based on the lemmas above we can prove some properties of arithmetic mean, geometric mean and harmonic mean mentioned by Ando [1].

Theorem 1 Suppose that $a, b \in A$ with a > 0, b > 0, then

$$H(a,b) = H(b,a)$$
 and $G(a,b) = G(b,a)$.

Proof H(a,b) = H(b,a) follows the definition of the harmonic mean and the fact that A is an Abelian group.

Observe that G(a,b) = G(b,a) is equivalent to

$$a^{-\frac{1}{2}}b^{\frac{1}{2}}\left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}}b^{\frac{1}{2}}a^{-\frac{1}{2}} = \left(a^{-\frac{1}{2}}ba^{-\frac{1}{2}}\right)^{\frac{1}{2}}.$$

Since positive elements are equal if and only if their squares are equal (see [7], Lemma 6), using Lemma 2 this is in turn equivalent to

$$a^{-\frac{1}{2}}b^{\frac{1}{2}}\left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}}\left[b^{\frac{1}{2}}a^{-1}b^{\frac{1}{2}}\right]\left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}}b^{\frac{1}{2}}a^{-\frac{1}{2}}=a^{-\frac{1}{2}}ba^{-\frac{1}{2}}.$$

Since the term in square brackets is just $\left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{-1}$ by Lemma 3, the left hand side of the expression above does indeed reduce to the right hand side when we use Lemma 2 again.

Theorem 2 Suppose that $a, b, c \in A$ with a > 0, b > 0 and $c \in Inv(A)$, then

$$c^*H(a,b)c = H(c^*ac, c^*bc)$$
 and $c^*G(a,b)c = G(c^*ac, c^*bc)$.

Proof Since $c \in Inv(A)$, c^{-1} exists. Hence

$$c^*H(a,b)c = c^* \left(\frac{1}{2}a^{-1} + \frac{1}{2}b^{-1}\right)^{-1}c = \left(c^{-1} \left(\frac{1}{2}a^{-1} + \frac{1}{2}b^{-1}\right)(c^*)^{-1}\right)^{-1}$$
$$= \left(\frac{1}{2}c^{-1}a^{-1}(c^*)^{-1} + \frac{1}{2}c^{-1}b^{-1}(c^*)^{-1}\right)^{-1} = \left(\frac{1}{2}(c^*ac)^{-1} + \frac{1}{2}(c^*bc)^{-1}\right)^{-1} = H(c^*ac, c^*bc).$$

It is Analogous with the proof of Theorem 1, we now verify the second equality.

$$c^*G(a,b)c = G(c^*ac, c^*bc)$$

$$\iff c^*b^{\frac{1}{2}} \left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}}b^{\frac{1}{2}}c = (c^*bc)^{\frac{1}{2}} \left((c^*bc)^{-\frac{1}{2}} (c^*ac) (c^*bc)^{-\frac{1}{2}}\right)^{\frac{1}{2}} (c^*bc)^{\frac{1}{2}}$$

$$\iff (c^*bc)^{-\frac{1}{2}} c^*b^{\frac{1}{2}} \left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}} b^{\frac{1}{2}}c (c^*bc)^{-\frac{1}{2}} = \left((c^*bc)^{-\frac{1}{2}} (c^*ac) (c^*bc)^{-\frac{1}{2}}\right)^{\frac{1}{2}}$$

$$\iff \left((c^*bc)^{-\frac{1}{2}} c^*b^{\frac{1}{2}} \left(b^{-\frac{1}{2}}ab^{-\frac{1}{2}}\right)^{\frac{1}{2}} b^{\frac{1}{2}}c (c^*bc)^{-\frac{1}{2}}\right)^2 = (c^*bc)^{-\frac{1}{2}} (c^*ac) (c^*bc)^{-\frac{1}{2}}.$$

The last equality is true, since by Lemma 2

Theorem 3 Suppose that $a, b \in A$ with a > 0, b > 0. Then

$$H_w(a,b)^{-1} = A_w(a^{-1},b^{-1})$$
 and $G_w(a^{-1},b^{-1}) = G_w(a,b)^{-1}$.

 ${f Proof}$ The first equality is obvious from its definitions. Using Lemma 2 and Lemma 3, we have

$$G_{w}(a^{-1}, b^{-1}) = (b^{-1})^{\frac{1}{2}} \left((b^{-1})^{-\frac{1}{2}} a^{-1} (b^{-1})^{-\frac{1}{2}} \right)^{w_{1}} (b^{-1})^{\frac{1}{2}}$$

$$= (b^{\frac{1}{2}})^{-1} \left((b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{-1} \right)^{w_{1}} (b^{\frac{1}{2}})^{-1}$$

$$= (b^{\frac{1}{2}} (b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{w_{1}} b^{\frac{1}{2}})^{-1}$$

$$= G_{w}(a, b)^{-1}.$$

Theorem 4 Suppose that $a, b \in A$ with a > 0, b > 0, and w_1, w_2 are positive numbers summing to 1, then

$$H_w(a,b) \le G_w(a,b) \le A_w(a,b).$$

Proof Firstly we verify the arithmetic-geometric means inequality: $G_w(a, b) \leq A_w(a, b)$. With the help of inequality (5),

$$G_{w}(a,b) \leq A_{w}(a,b)$$

$$\iff b^{\frac{1}{2}} (b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{w_{1}} b^{\frac{1}{2}} \leq w_{1} a + w_{2} b$$

$$\iff b^{\frac{1}{2}} (b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{w_{1}} b^{\frac{1}{2}} \leq b^{\frac{1}{2}} \left(w_{1} b^{-\frac{1}{2}} a b^{-\frac{1}{2}} + w_{2} \right) b^{\frac{1}{2}}$$

$$\iff (b^{-\frac{1}{2}} a b^{-\frac{1}{2}})^{w_{1}} \leq w_{1} b^{-\frac{1}{2}} a b^{-\frac{1}{2}} + w_{2}$$

$$\iff w_{1} n + w_{2} - n^{w_{1}} \geq 0,$$

where $n:=b^{-\frac{1}{2}}ab^{-\frac{1}{2}}$. Lemma 1 and inequality (5) imply n>0, and hence $\sigma(n)\subset(0,\infty)$.

Let $f(z) = w_1 z + w_2 - z^{w_1}$, where z^{w_1} is the principal of the power function. Then f(z) is analytic in the right half open plane {Re z > 0} of the complex plane. Next we claim that $f(z) \ge 0$ on the positive real line. In fact, let x = z - 1 in the Bernoulli inequality:

$$(1+x)^{w_1} \le 1 + w_1 x$$
, if $0 < w_1 < 1$ and $-1 < x$.

We have

$$z^{w_1} \le w_1 z + (1 - w_1),$$
 if $0 < w_1 < 1$ and $0 < z$,

that is,

$$f(z) \ge 0$$
, if $0 < w_1 < 1$ and $0 < z$.

The Spectral Mapping Theorem implies

$$\sigma(f(n)) = f(\sigma(n)) \subset [0, \infty).$$

So

$$f(n) = w_1 n + w_2 - n^{w_1} > 0.$$

Hence

$$G_w(a,b) \leq A_w(a,b).$$

Replacing a and b by a^{-1} and b^{-1} respectively in the arithmetic-geometric means inequality, Theorem 3 and inequality (7) guarantees that

$$H_w(a,b) \leq G_w(a,b).$$

In general, for $a_1, a_2, \ldots, a_n \in A$, and an *n*-tuple of positive numbers w_1, w_2, \ldots, w_n are summing to 1, their weighted arithmetic mean in A can be defined as

$$A_w(a_1, a_2, \dots, a_n) := w_1 a_1 + w_2 a_2 + \dots + w_n a_n.$$

If $a_i > 0$, $1 \le i \le n$, their weighted harmonic mean in A can be defined as

$$H_w(a_1, a_2, \dots, a_n) := (w_1 a_1^{-1} + w_2 a_2^{-1} + \dots + w_n a_n^{-1})^{-1}.$$

From the point of view of matrix analysis (see [8]), if $a_i > 0$, $1 \le i \le n$, and w_1, \ldots, w_n are positive numbers summing to 1, their weighted geometric mean in A can be defined as

$$G_w(a_1, a_2, \dots, a_n) := a_n^{\frac{1}{2}} (a_n^{-\frac{1}{2}} a_{n-1}^{\frac{1}{2}} \cdots (a_3^{-\frac{1}{2}} a_2^{\frac{1}{2}} (a_2^{-\frac{1}{2}} a_1 a_2^{-\frac{1}{2}})^{\alpha_1} a_2^{\frac{1}{2}} a_3^{-\frac{1}{2}})^{\alpha_2} \cdots a_{n-1}^{\frac{1}{2}} a_n^{-\frac{1}{2}})^{\alpha_{n-1}} a_n^{\frac{1}{2}},$$

where $\alpha_i = 1 - \left(w_{i+1} / \sum_{j=1}^{i+1} w_j\right)$ for $i = 1, \dots, n-1$. Note that this geometric mean is just the inductive generalization of n = 2 case, which was discussed in Theorem 3 and 4.

Based on Theorem 4 with the same inductive proof in [8], we have

Theorem 5 Suppose that $a_i \in A$, $1 \le i \le n$, with $a_i > 0$, $1 \le i \le n$, and w_1, \ldots, w_n are positive numbers summing to 1, then

$$H_w(a_1, \ldots, a_n) \le G_w(a_1, \ldots, a_n) \le A_w(a_1, \ldots, a_n).$$

Acknowledgements Many thanks to the editor S. Stratila for his help.

References

- [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl., **26**(1979) 203-241. MR **80f**: 15023.
- [2] R. Bhatia, Matrix analysis, Springer-Verlag New York, 1997, MR 98i: 15003.
- [3] F. F. Bonsall and J. Duncan, Complete normed algebra. Spring-Verlag, 1973. MR 54 11013.
- [4] J. B. Conway, A course in functional analysis, second edition. Springer-Verlag New York, Inc. 1990. MR **91e**: 46001.
- [5] T. Okayasu, The Löwner-Heinz inequality in Banach *-algebra. Glasgow Math. J. 42 (2000), 243-246. MR 2001a: 46054.
- [6] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras II. Duke Math. J. 37 (1970), 275-280. MR 41 5977.
- [7] K. Tanahashi and A. Uchiyama, The Furuta inequality in Banach *-algebras. Proc. Amer. Math. Soc., **128** (2000), 1691-1695. MR **2000j**: 47031.
- [8] M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices, *Linear and Multilinear Algebra* 37(1994) 279–282, MR 95m: 15030.

Bao Qi Feng Department of Mathematical Sciences Kent State University, Tuscarawas Campus New Philadelphia, OH 44663-9403 USA e-mail: bfeng@tusc.kent.edu